机器人的驱动方式有哪些?与间接驱动机器人相比,直接驱动机器人有哪些优势?
1、机器人的驱动方式有哪些?
机器人常用的驱动方式主要有液压驱动、气压驱动和电气驱动3种基本类型。液压驱动方式液压驱动的特点是功率大,结构简单,可以省去减速装置,能直接与被驱动的连杆相连,响应快,伺服驱动具有较高的精度,但需要增设液压源,而且易产生液体泄漏,故目前多用于特大功率的机器人系统。优点:(1)液压容易达到较高的单位面积压力体积较小,可以获得较大的推力或转矩。(2)液压系统介质的可压缩性小,工作平稳可靠,并可得到较高的位置精度。(3)液压传动中,力、速度和方向比较容易实现自动控制。(4)液压系统采用油液作介质,具有防锈性和自润滑性能,可以提高机械效率,使用寿命长。缺点:(1)油液的粘度随温度变化而变化,这将影响工作性能。高温容易引起燃烧、爆炸等危险。(2)液体的泄漏难于克服,要求液压元件有较高的精度和质量,故造价较高。(3)需要相应的供油系统,尤其是电液伺服系统要求严格的滤油装置,否则会引起故障。气压驱动方式气压驱动的能源、结构都比较简单,但与液压驱动相比,同体积条件下功率较小,而且速度不易控制,所以多用于精度不高的点位控制系统。优点:(1)压缩空气粘度小,容易达到高速(1m/s)。(2)利用工厂集中的空气压缩机站供气,不必添加动力设备。(3)空气介质对环境无污染,使用安全,可直接应用于高温作业。(4)气动元件工作压力低,故制造要求也比液压元件低。缺点:(1)压缩空气常用压力为0.4~0.6MPa,若要获得较大的压力,其结构就要相对增大。(2)空气压缩性大,工作平稳性差,速度控制困难,要达到准确的位置控制很困难。
(3)压缩空气的除水问题是1个很重要的问题,处理不当会使钢类0件生锈,导致机器人失灵。此外,排气还会造成噪声污染。电气驱动方式电气驱动所用能源简单,机构速度变化范围大,效率高,速度和位置精度都很高,且具有使用方便、噪声低和控制灵活的特点。
2、与间接驱动机器人相比,直接驱动机器人有哪些优势?
机器人由3大部分6个子系统组成。3大部分是机械部分、传感部分和控制部分。6个子系统是驱动系统、机械结构系统、感受系统、机器人1环境交换系统、人机交换系统和控制系统。 驱动系统,要使机器人运作起来,各需各个关节即每个运动自由度安置传动装置。这就是驱动系统。驱动系统可以是液压传动、气压传动、电动传动、或者把它们结合起来应用综合系统,可以是直接驱动或者通过同步带、链条、轮系、谐波齿轮等机械传动机构进行间接传动。 机械结构传动,工业机器人的机械结构系统由机座、手臂、末端操作器3大部分组成,每1个大件都有若干个自由度的机械系统。若基座不具备行走机构,则构成行走机器人;若基座不具备行走及弯腰机构,则构成单机器人臂。手臂1般由上臂、下臂和手腕组成。末端操作器是直接装在手腕上的1个重要部件,它可以是2手指或多手指的手抓,也可以是喷漆枪、焊具等作业工具。 感受系统由内部传感器模块和外部传感器模块组成,用以获得内部和外部环境状态中有意义的信息。智能传感器的使用提高了机器人的机动性、适应性和智能化的水准。人类的感受系统对感知外部世界信息是极其灵巧的,然而,对于1些特殊的信息,传感器比人类的感受系统更有效。 机器人1环境交换系统是现代工业机器人雨外部环境中的设备互换联系和协调的系统。工业机器人与外部设备集成为1个功能单元,如加工单元、焊接单元、装配单元等。当然,也可以是多台机器人、多台机床或设备、多个0件存储装置等集成为1个去执行复杂任务的功能单元。 人工交换系统是操作人员与机器人控制并与机器人联系的装置,例如,计算机的标准终端,指令控制台,信息显示板,危险信号报警器等。该系统归纳起来分为两大类:指令给定装置和信息显示装置。 控制系统的任务是根据机器人的作业指令程序以及传感器反馈回来的信号支配机器人的执行机构去完成规定的运动和功能。假如工业机器人不具备信息反馈特征,则为开环控制系统;若具备信息反馈特征,则为闭环控制系统。根据控制原理,控制系统可分为程序控制系统、适应性控制系统和人工智能控制系统。根据控制运行的形式,控制系统可分为点位控制和轨迹控制。
3、机器人驱动系统是什么?
工业机器人的驱动系统,按动力源分为液压,气动和电动3大类。根据需要也可由这3种基本类型组合成复合式的驱动系统。这3类基本驱动系统的各有自己的特点。
4、工业机器人最显著的特点有哪些?
工业机器人指由操作机(机械本体)、控制器、伺服驱动系统和传感装置构成的1种仿人操作、自动控制、可重复编程、能在3维空间完成各种作业的光机电1体化生产设备,特别适合于多品种、变批量的弹性制造系统。
1、工业机器人按臂部的运动形式分为4种:
1、直角坐标型的臂部可沿3个直角坐标移动;
2、圆柱坐标型的臂部可作升降、回转和伸缩动作;
3、球坐标型的臂部能回转、俯仰和伸缩;
4、关节型的臂部有多个转动关节。
2、工业机器人按执行机构运动的控制机能又可分点位型和连续轨迹型。
1、点位型只控制执行机构由1点到另1点的准确定位,适用于机床上下料、点焊和1般搬运、装卸等作业;
2、连续轨迹型可控制执行机构按给定轨迹运动,适用于连续焊接和涂装等作业。
3、工业机器人按程序输入方式区分有编程输入型和示教输入型两类:
1、编程输入型是将计算机上已编好的作业程序文件,通过RS232串口或者以太网等通信方式传送到机器人控制柜。
2、示教输入型的示教方法有两种:1种是由操作者用手动控制器(示教操纵盒),将指令信号传给驱动系统,使执行机构按要求的动作顺序和运动轨迹操演1遍;另1种是由操作者直接领动执行机构,按要求的动作顺序和运动轨迹操演1遍。在示教过程的同时,工作程序的信息即自动存入程序存储器中在机器人自动工作时,控制系统从程序存储器中检出相应信息,将指令信号传给驱动机构,使执行机构再现示教的各种动作。示教输入程序的工业机器人称为示教再现型工业机器人。
4、智能工业机器人具有触觉、力觉或简单的视觉的工业机器人,能在较为复杂的环境下工作;如具有识别功能或更进1步增加自适应、自学习功能,即成为智能型工业机器人。它能按照人给的“宏指令”自选或自编程序去适应环境,并自动完成更为复杂的工作。
2、工业机器人的特点自20世纪60年代初第1代机器人在美国问世以来,工业机器人的研制和应用有了飞速的发展,但工业机器人最显著的特点归纳有以下几个。1.可编程。生产自动化的进1步发展是柔性自动化。工业机器人可随其工作环境变化的需要而再编程,因此它在小批量多品种具有均衡高效率的柔性制造过程中能发挥很好的功用,是柔性制造系统(FMS)中的1个重要组成部分。2.拟人化。工业机器人在机械结构上有类似人的行走、腰转、大臂、小臂、手腕、手爪等部分,在控制上有电脑。此外,智能化工业机器人还有许多类似人类的“生物传感器”,如皮肤型接触传感器、力传感器、负载传感器、视觉传感器、声觉传感器、语言功能等。传感器提高了工业机器人对周围环境的自适应能力。3.通用性。除了专门设计的专用的工业机器人外,1般工业机器人在执行不同的作业任务时具有较好的通用性。比如,更换工业机器人手部末端操作器(手爪、工具等)便可执行不同的作业任务。4.机电1体化。工业机器人技术涉及的学科相当广泛,但是归纳起来是机械学和微电子学的结合——机电1体化技术。第3代智能机器人不仅具有获取外部环境信息的各种传感器,而且还具有记忆能力、语言理解能力、图像识别能力、推理判断能力等人工智能,这些都和微电子技术的应用,特别是计算机技术的应用密切相关。因此,机器人技术的发展必将带动其他技术的发展,机器人技术的发展和应用水平也可以验证1个国家科学技术和工业技术的发展和水平。更多详细的机器人信息和介绍可以关注中国机器人信息网,有更专业的机器人资讯可以提供给你。
5、说说移动机器人有哪几种驱动方式
1般有电动驱动,液压驱动、气压驱动等方式。小微型机器人1是电动驱动。工业用机器人1般是电控液压驱动或电控气压驱动。液压驱动系统:由于液压技术是1种比较成熟的技术。它具有动力大、力(或力矩)与惯量比大、快速响应高、易于实现直接驱动等特点。适于在承载能力大,惯量大以及在防焊环境中工作的这些机器人中应用。但液压系统需进行能量转换(电能转 换成液压能),速度控制多数情况下采用节流调速,效率比电动驱动系统低。液压系统的液体泄泥会对环境产生污染,工作噪声也较高。因这些弱点,近年来,在负荷为100kz以下的机器人中往往被电动系统所取代。气动驱动系统:具有速度快、系统结构简单,维修方便、价格低等特点。适于在中、小负荷的机器人中采用。但因难于实现伺服控制,多用于程序控制的机械人中,如在上、下料和冲压机器人中应用较多。电动驱动系统:由于低惯量,大转矩交、直流伺服电机及其配套的伺服驱动器(交流变频器、直流脉冲宽度调制器)的广泛采用,这类驱动系统在机器人中被大量选用。这类系统不需能量转换,使用方便,控制灵活。大多数电机后面需安装精密的传动机构。直流有刷电机不能直接用于要求防爆的环境中,成本也较上两种驱动系统的高。但因这类驱动系统优点比较突出,因此在机器人中被广泛的选用。
6、机器人关节的驱动方式有哪3种?
当前,市场上的机器人主要使用3种驱动方法,即液压驱动,气动驱动和电动机驱动。这3种驱动方法中的每1种都有自己的特征: 电动机驱动是利用各种电动机产生的力或转矩直接驱动机器人的关节,或者通过诸如减速的机构来驱动机器人的关节,以获得所需的位置,速度,加速度和其他指标。具有环保,整洁,控制方便,运动精度高,维护成本低,驱动效率高的优点。电机有4种类型:步进电机,直流伺服电机,交流伺服电机和线性电机。 液压驱动器使用液体作为介质来传递力,并使用液压泵使液压系统产生的压力驱动执行器运动。 液压驱动模式是成熟的驱动模式。它具有易于控制的压力和流量,高刚性,不可压缩的液压油,简单稳定的调速,方便的操作和控制以及广泛的无级调速(调速范围高达2000:1),并且具有以下优点:较小的驱动力或扭矩可获得更大的动力。然而,由于流体流动阻力,温度变化,杂质,泄漏等的影响,工件的稳定性和定位精度不准确,并且还造成环境污染并增加了维护技术要求。因此,它经常用于需要较大输出力和低运动速度的场合。在电驱动技术成熟之前,液压驱动是最广泛使用的驱动方法。 气动驱动器使用空气作为工作介质,并使用气源发生器将压缩空气的压力能转换为机械能,以驱动执行器以完成预定的运动定律。气动驱动具有节能简单,时间短,动作快,柔软,重量轻,产量/质量比高,安装维护方便,安全,成本低,对环境无污染的优点。然而,由于空气的可压缩性,要实现高精度,快速响应的位置和速度控制并不容易,而且还会降低驱动系统的刚性。